Geometric Modeling

Assignment sheet #9

"(Rational) Spline Curves"

(due July 3rd 2012 before the lecture)

Silke Jansen, Ruxandra Lasowski, Art Tevs, Michael Wand

Exercise 1 (Spline Curves):

[1+2+1points]

Consider a quadratic B-Spline curve with knot sequence 0, 1/5, 2/5, 3/5, 4/5, 1 and control points:

$$P_0 = P_4 = \begin{pmatrix} -1 \\ 1 \end{pmatrix}, P_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, P_2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}, P_3 = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$$

- a. How many segments does the curve have? What is the interval of the curve ? Why? What are the polar forms of the individual segments?
 Sketch the control polygon and the segments
- b. Evaluate the curve at t=0.5 using above knot sequence.Evaluate the curve at t=0.5 using knot sequence 0, 0, 0.2, 0.5, 1, 1.
- c. Compute the control points for the derivate of the curve and sketch the resulting control polygon.

Exercise 2 (Curavture of Bézier Curves)

[4 points]

Prove that the curvature of a Bézier curve of degree n at the starting point P_0 is given by:

$$\kappa 2(P_0) = 2 \frac{n-1}{n} \frac{area(P_0, P_1, P_2)}{dist^3(P_0, P_1)} = \frac{n-1}{n} \frac{h}{a^2}$$

Exercise 3 (Bézier Curves):

[4 points]

Find a cubic Bézier curve P(u), $P:[0,1] \rightarrow \mathbb{R}^2$ with:

$$P(0) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \quad P(1) = \begin{pmatrix} 9 \\ 0 \end{pmatrix}$$

which intersects itself at $P(\frac{1}{4}) = P(\frac{3}{4})$ orthogonally.

Exercise 4 (Spline Representation of Circles):

[3 points]

Prove that a circle $\{(x, y) \in \mathbb{R}^2 : x^2 + y^2 = r^2\}$ cannot be represented as a non-rational polynomial B-Spline curve. Why is your proof not applicable for rational splines?

Hint: The proof can be done by induction.

Exercise 4 (Reparametrization of Rational Bézier):

[1+2+1 points]

- a. Let $\gamma>0$. Prove that $\phi(t):=\frac{\gamma t}{1-(1-\gamma)t}$ is a parameter transformation of the interval [0,1], i.e. $\phi(0)=0$, $\phi(1)=1$, and $\phi:[0,1]\to[0,1]$ bijective.
- b. Given is a rational Bézier curve F with control points $b_0, b_1, ..., b_n$ and weights $w_0, w_1, ..., w_n$. In addition, let $\widetilde{F}(t) \coloneqq F(\phi(t))$ with $\phi(t)$ as defined in (a). Prove that \widetilde{F} is a rational Bézier curve as well and find its control points \widetilde{b}_i and weights \widetilde{w}_i . Hint: Consider the parameter transformation ϕ for a Bernstein polynomial B_i^n first.
- c. Prove that any rational Bézier curve can be normalized by reparametrization such that $w_0=w_n=1$.