Geometric Modeling

Assignment sheet \#9

"(Rational) Spline Curves"

(due July 3rd 2012 before the lecture)

Silke Jansen, Ruxandra Lasowski,

Art Tevs, Michael Wand

Exercise 1 (Spline Curves):

[1+2+1points]
Consider a quadratic B-Spline curve with knot sequence $0,1 / 5,2 / 5,3 / 5,4 / 5,1$ and control points:

$$
P_{0}=P_{4}=\binom{-1}{1}, \quad P_{1}=\binom{1}{1}, \quad P_{2}=\binom{1}{-1}, \quad P_{3}=\binom{-1}{-1}
$$

a. How many segments does the curve have? What is the interval of the curve ? Why?

What are the polar forms of the individual segments?
Sketch the control polygon and the segments
b. Evaluate the curve at $\mathrm{t}=0.5$ using above knot sequence.

Evaluate the curve at $\mathrm{t}=0.5$ using knot sequence $0,0,0.2,0.5,1,1$.
c. Compute the control points for the derivate of the curve and sketch the resulting control polygon.

Exercise 2 (Curavture of Bézier Curves)

Prove that the curvature of a Bézier curve of degree n at the starting point P_{0} is given by:

$$
\kappa 2\left(P_{0}\right)=2 \frac{n-1}{n} \frac{\operatorname{area}\left(P_{0}, P_{1}, P_{2}\right)}{\operatorname{dist}^{3}\left(P_{0}, P_{1}\right)}=\frac{n-1}{n} \frac{h}{a^{2}}
$$

Find a cubic Bézier curve $\mathrm{P}(\mathrm{u}), P:[0,1] \rightarrow R^{2}$ with:

$$
P(0)=\binom{0}{0}, \quad P(1)=\binom{9}{0}
$$

which intersects itself at $P\left(\frac{1}{4}\right)=P\left(\frac{3}{4}\right)$ orthogonally.

Exercise 4 (Spline Representation of Circles):

Prove that a circle $\left\{(x, y) \in \mathfrak{R}^{2}: x^{2}+y^{2}=r^{2}\right\}$ cannot be represented as a non-rational polynomial B-Spline curve. Why is your proof not applicable for rational splines?

Hint: The proof can be done by induction.

Exercise 4 (Reparametrization of Rational Bézier):
[1+2+1 points]
a. Let $\gamma>0$. Prove that $\phi(t):=\frac{\gamma t}{1-(1-\gamma) t}$ is a parameter transformation of the interval $[0,1]$, i.e. $\phi(0)=0, \phi(1)=1$, and $\phi:[0,1] \rightarrow[0,1]$ bijective.
b. Given is a rational Bézier curve F with control points $b_{0}, b_{1}, \ldots, b_{n}$ and weights $w_{0}, w_{1}, \ldots, w_{n}$. In addition, let $\tilde{F}(t):=F(\phi(t))$ with $\phi(t)$ as defined in (a).
Prove that \tilde{F} is a rational Bézier curve as well and find its control points \tilde{b}_{i} and weights \tilde{w}_{i}. Hint: Consider the parameter transformation ϕ for a Bernstein polynomial B_{i}^{n} first.
c. Prove that any rational Bézier curve can be normalized by reparametrization such that $\mathrm{w}_{0}=\mathrm{w}_{\mathrm{n}}=1$.

